

# Vis Breakout

Mark Hereld & Joe Insley



### ALCF's Eureka and Gadzooks

- 104 dual quad core servers
- 208 Quadro FX5600 graphics engines
- 312 Gbytes of total frame buffer RAM
- 3.2 TB of total system RAM
- Each node (server):
  - Dual quad core CPU
  - 2 GPUs
  - 1.5 GB frame buffer RAM
  - 32 GB system RAM



## **Under the Circumstances**

- Confounding circumstances
  - Compute is far away, expensive, batch
  - Storage is distant as well
    - Datasets are very large
    - Disk speed and network bandwidth are constraining
  - Workstation and display pixels are local
    - And these are limited in capacity
- Exploring results is challenging
- Data volume example
  - 32K procs each handling 29x29x29 cells
    - 928 x 928 x 928 cells
  - 751 time steps, 21 variables
    - 30 GB HDF5 file per step, 22 TB total



#### All Sorts of Tools

- Visualization Applications
  - VisIt
  - ParaView
  - EnSight
- Domain Specific
  - PyMol, RasMol
- APIs
  - VTK: visualization
  - ITK: segmentation & registration
- GPU performance
  - Scout: GPGPU acceleration
  - vl3: shader-based vol ren

- Analysis Environments
  - Matlab
  - Parallel R (ORNL)
- Utilities
  - GnuPlot
  - ImageMagick
- Visualization Workflow
  - VisTrails























#### ParaView Overview



Parallel Visualization Application

Open source

- VTK + Tcl
- Python scripting
- Interactive and batch
- **About**

Kitware, Sandia National Labs, CSimSoft, LANL, Army Research Lab, ...

Kitware ParaView 3.1.1 (development)

View Sources Fifters Animation Tools Help

- http://www.paraview.org
- http://paraview.org/Wiki/ParaView
- http://paraview.org/Wiki/SC07\_ParaView\_Tutorial

The ParaView Guide, Amy Henderson







0 🗘

## **VisIt Overview**









- Parallel interactive visualization application
- About
  - DOE ASCI
  - https://www.llnl.gov/visit
  - Manuals, tutorials, application help



































### **VisTrails**

Scientific workflow management for visual data analysis

- Visual programming
- Construct and execute pipelines
  - VTK, ITK, and Matplotlib
- History tree captures provenance
- Visualization spreadsheet
- About
  - http://www.vistrails.org





# In situ analysis and data reduction

- Incorporate analysis routines into the simulation code
  - operate on data while it is still in memory
- Potential for significant reduction the I/O demands
  - application scientist identifies features of interest
  - compress data of less interest

Here, the feature of interest is the mixture fraction with an iso-value of 0.2 (white surface). Colored regions are a volume rendering of the HO2 variable (data courtesy J. Chen).

By compressing data more aggressively the further it is from this surface, we can attain a compression ratio of 20-30x while still retaining full fidelity in the vicinity of the surface.



C. Wang, H. Yu, and K.-L. Ma, "Application-driven compression for visualizing large-scale time-varying volume data", IEEE Computer Graphics and Applications, accepted for publication.



## **Nuclear Reactor Simulation**

## Preliminary studies

- 4.5 million elements
- 7 variables per element
- 20 K timesteps
- Total data produced 2.5 TB

#### Science runs

- 3 4 runs with 120 million elements
- Several runs at ½ and ¼ resolution
- 90 K timesteps
- Total data produced 900TB 1.2 PB



# **Climate Modeling**

### Preliminary studies

- 50-100 with 3 million grid points (1 M atmosphere, 2 M ocean)
- 100 variables per grid point (30 vectors, 70 scalars)
- Simulating 5 10 years of climate
- Total data produced 30 -124 TB

#### Science runs

- 50 runs with 6 million grid points
- Simulating 100 years of climate
- Total data produced 1.2 PB



# **Astrophysics**

- Preliminary studies
  - − ~80 with 67 M grid points
  - ~5 with 536 M grid points
  - 6 variables (1 vector, 3 scalars)
  - ~1800 time steps
  - Total data produced 78 TB
- Science run\*
  - 1024<sup>2</sup> x 4096 grid points
  - 6 variables (1 vector, 3 scalars)
  - − ~1800 time steps
  - Total data produced 48 TB

\*3-5 times bigger allocation is needed





# Analysis/Visualization Questionnaire – Overview

- Do you have preferred computational platform?
- What are your dataset sizes?
  - Do you have checkpoint files and analysis files or is everything together?
- How long do your simulations run? (e.g. wall clock time)
  - Is the result a time series?
  - How many files does that produce?
- Do you do your analysis local or using remote resources?
  - Why?
- How long do you spend on analysis, what is the fraction of compute versus human?



# A/V Q - Your I/O footprint

- How much of your simulation time is I/O? (e.g. 10%)
- Do you do data reduction (e.g. convert from double to float during I/O, subsample data, ...)?
  - Why?
- What are your transfer rates to disk from simulation? (e.g. bandwidth)
- What are your transfer rates from disk for analysis? (e.g. bandwidth)



## A/V Q - Your Goals

- What do you look to get out of analysis process?
- What analysis tools are you currently using?
  - What are the limitations?
- Do you do real-time exploration or batch processing?
  - What is the role of real-time exploration?
    - Batch?
      - Percentage of your analysis time spent in either mode?
- Do you look at images, movies or graphs?
  - What is role of each (e.g. graphs for science, images publications, movies for talks)

